Comparison of calibrations of wind speed meters with a large blockage effect

Euramet project no. 1431

<u>J. Geršl (jgersl@cmi.cz</u>), P. Busche, M. de Huu, D. Pachinger, H. Müller, K. Hölper, A. Bertašienė, M. Vilbaste, I. Care, H. Kaykısızlı, L. Maar, S. Haack

FLOMEKO 2019, Lisbon 26.-28.6. 2019

Examples of wind tunnels of various types and sizes used for calibrations of anemometers

Goals

- Investigate effect of boundary conditions in test section of a wind tunnel to indication of larger size vane and cup anemometers for a given reference velocity in area undisturbed by the MUT (blockage effect), especially but not only for wind tunnels with open test section
- > Investigate effect of flow disturbance in front of large size vane and cup anemometers
- Compare calibration results of European wind-speed laboratories for the large size vane and cup anemometers

Transfer standards

Schiltknecht MiniAir20 Macro, d = 8.5 cm

Vaisala WAA151 d = 18.2 cm

Testo 0635 9340 d = 10.8 cm

Thies First Class Advanced d = 24 cm

RM Young Gill Propeller d = 20 cm

Airflow TA440, d = 0.7 cm

Participants

lab no.	test	nozzle	nozzle
	sectio	shape	diameter
	n type		/width (cm)
open or box			
1	open	square	100
2	box	circular	80
3	open	rectang.	50 x 60
4	open	circular	45
5	box	circular	40
6	open	circular	32
7	box	circular	31.5
8	box	circular	25.5
9	open	circular	25.5
10	box	circular	15.2
closed			
11	closed	rectang.	74 x 49
12	closed	square	51
13	closed	square	50
14	closed	circular	40

•3

Schiltknecht 8.5 cm vane – results

$$En = \frac{E_1 - E_2}{\sqrt{U_1^2 + U_2^2 + D^2}}$$

wt.set	all (14)	large (11)
v (m/s)	% En ≤ 1	
0,5	99	98
2	64	53
5	53	47
8	49	42
12	47	38
20	49	45

•1, 13

$$En = \frac{E_1 - E_2}{\sqrt{U_1^2 + U_2^2 + D^2}}$$

wt.set	all (14)	large (8)
v (m/s)	% Eı	n ≤ 1
0,5	88	81
2	58	93
5	51	75
8	51	71
12	47	68

RM Young 20 cm vane – velocity field 20 m/s

RM Young 20 cm vane – results

wt.set	all	large
	(11)	(6)
v (m/s)	% Er	n ≤ 1
0,5	76	73
2	100	100
5	69	93
8	56	80
12	51	87
20	64	80

Vaisala 18 cm cup – velocity field 20 m/s - horizontal

•1, 13

2•

Vaisala 18 cm cup – results

wt.set	all	large
	(12)	(6)
v (m/s)	% Er	n≤1
1	84	87
2	59	67
5	64	80
8	50	73
12	56	93
20	58	93

Thies 24 cm cup – velocity field 20 m/s - horizontal

wt.set	all	large
	(11)	(3)
v (m/s)	% Er	n ≤ 1
0,5	69	67
2	62	67
5	73	67
8	75	67
12	69	100
20	67	67

Trends according to test section size and type?

open box losed

- Flow disturbance in front of cup anemometers is large even in reference meter position of large wind tunels in the project
- Large vane diameter does not mean a large flow disturbance; frame around a vane and density of blades plays role
- The percenatage of En < 1 shows that there is something to be investigated in our uncertainty budgets</p>
- Data to be analyzed to look for trends in MUT error according to wind tunnel size and type; some trends are observable in error difference of 8 cm vane and 10 cm vane
- Additional measurements with small 2.5 cm vane are performed in several wind tunnels to confirm the trends in error differences

Thank you for your and attention!